The Nutritional Quality of Forage Grass Changes Due to Changing Soil Chemistry Resulting from Different Land-Use Management in the Oroba Valley, Kenya

  • Job Isaboke Department of Environmental Biology and Health, School of Environmental Studies, University of Eldoret, Eldoret, Kenya
  • Osano Odipo Department of Environmental Biology and Health, School of Environmental Studies, University of Eldoret, Eldoret, Kenya
  • Olivier S. Humphrey Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Nottingham, NG12 5GG, UK
  • Sophia M. Dowell Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Nottingham, NG12 5GG, UK
  • Michael J. Watts Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Nottingham, NG12 5GG, UK


Threats from land degradation may escalate problems of inadequate food supply and poverty that already afflict the inhabitants of the Oroba Valley, Nandi County, Kenya. The steepness and inadequate application of good agricultural management systems expose the area to soil degradation, including erosion, depletion, and leaching of nutrients. Here, forage grass contributes to 60% of animal nutrient intake and this study investigated the macronutrient levels of forage grass from four differently managed farms and their vulnerability to soil erosion. Grass and soil were sampled from four differently managed plots in a randomised block design: plots 1 and 2 contained five sections (blocks), while plots 3 and 4 contained six sections. Grass samples were collected and analysed for five macronutrients (Mg, P, Ca, Cr, and Fe) by ICP-MS. Analysis of soils for characteristics of all soils from the pilot plots were classified as non-calcareous since their pH values range from 5.4 - 6.5. Organic matter (OM) distribution in the pilot plots depends on the amount of available plant reduces; most were cleared for animal consumption, as shown on the lower grounds of all pilot plots. The pH levels across the pilot plots dictated the distribution of macronutrients analysed in this study. Different plants have different optimum pH ranges for macronutrient uptake after considering all others around the plant's environment. Redistribution of macronutrients in the gradient of individual pilot plots majorly depends on the movement of soil by erosion. Results from the study have shown that different land management (erosion mitigated farmland and non-mitigated, newly farmed, and virgin land) affects the soil chemistry, hence changing grass's absorption regime for macronutrients to grass. For example, Mg, P, and Cr distribution variation between the mitigated and non-mitigated plots in the study. Macronutrients are essential for plant growth, health/resilience and yield; land degradation affects the soil chemistry and interrupts the natural balance of macronutrients input into the food chain leading to failure of achieving SDG 2 and 3 (Zero hunger, good health and wellbeing).


Al-Busaidi, A., Cookson, P. J. J. o. A., & Sciences, M. (2003). Salinity–pH relationships in calcareous soils. 8(1), 41-46.

Ali, M., Cone, J., Van Duinkerken, G., Klop, A., Kruisdijk, J., Blok, M., Bruinenberg, M., & Hendriks, W. J. N.-W. J. o. L. S. (2014). Relationship between chemical composition and in situ rumen degradation characteristics of grass silages in dairy cows. 70, 9-15.

Alyazouri, A., Jewsbury, R., Tayim, H., Humphreys, P., & Al-Sayah, M. H. (2020). Uptake of chromium by portulaca oleracea from soil: Effects of organic content, pH, and sulphate concentration. Applied and environmental soil science, 2020.

Angima, S., Stott, D., O’neill, M., Ong, C., Weesies, G. J. A., ecosystems, & environment. (2003). Soil erosion prediction using RUSLE for central Kenyan highland conditions. 97(1-3), 295-308.

Aronson, P. S., & Giebisch, G. (2011). Effects of pH on potassium: new explanations for old observations. Journal of the American Society of Nephrology, 22(11), 1981-1989.

Audette, Y., Smith, D. S., Parsons, C. T., Chen, W., Rezanezhad, F., & Van Cappellen, P. (2020). Phosphorus binding to soil organic matter via ternary complexes with calcium. Chemosphere, 260, 127624.

Baligar, V., Fageria, N., He, Z. J. C. i. s. s., & analysis, p. (2001). Nutrient use efficiency in plants. 32(7-8), 921-950.

Ballabio, C., Panagos, P., Lugato, E., Huang, J.-H., Orgiazzi, A., Jones, A., Fernández-Ugalde, O., Borrelli, P., & Montanarella, L. (2018). Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Science of the Total Environment, 636, 282-298.

Banks, M., Schwab, A., & Henderson, C. (2006). Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere, 62(2), 255-264.

Cakmak, I. (2013). Magnesium in crop production, food quality and human health. Plant and Soil, 368(1-2), 1-4.

Chow, T., Rees, H., Daigle, J. J. J. o. s., & conservation, w. (1999). Effectiveness of terraces/grassed waterway systems for soil and water conservation: A field evaluation. 54(3), 577-583.

Colombo, C., Palumbo, G., He, J.-Z., Pinton, R., & Cesco, S. (2014). Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. Journal of soils and sediments, 14, 538-548.

Comerford, N. (2005). Soil factors affecting nutrient bioavailability. In Nutrient acquisition by plants (pp. 1-14). Springer.

Dorren, L., & Rey, F. (2004). A review of the effect of terracing on erosion. Briefing Papers of the 2nd SCAPE Workshop,

Ehrmann, J., & Ritz, K. (2014). Plant: soil interactions in temperate multi-cropping production systems. Plant and Soil, 376, 1-29.

Ertani, A., Mietto, A., Borin, M., & Nardi, S. (2017). Chromium in agricultural soils and crops: a review. Water, Air, & Soil Pollution, 228, 1-12.

Fageria, N., Dos Santos, A., Moreira, A. J. C. i. S. S., & Analysis, P. (2010). Yield, nutrient uptake, and changes in soil chemical properties as influenced by liming and iron application in common bean in a no-tillage system. 41(14), 1740-1749.

Fageria, N., Moreira, A., Castro, C., Moraes, M. J. C. i. s. s., & analysis, p. (2013). Optimal acidity indices for soybean production in Brazilian Oxisols. 44(20), 2941-2951.

Fageria, N., Zimmermann, F. J. C. i. S. S., & Analysis, P. (1998). Influence of pH on growth and nutrient uptake by crop species in an Oxisol. 29(17-18), 2675-2682.

FAO. (2022). FAO in Kenya, Kenya at a glance. food and agricultural organization.

Gao, L., Bowker, M. A., Xu, M., Sun, H., Tuo, D., Zhao, Y. J. S. B., & Biochemistry. (2017). Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. 105, 49-58.

George, D., & Mallery, P. (2018). Descriptive statistics. In IBM SPSS Statistics 25 Step by Step (pp. 126-134). Routledge.

Gichenje, H., Pinto-Correia, T., & Godinho, S. (2019). An analysis of the drivers that affect greening and browning trends in the context of pursuing land degradation-neutrality. Remote Sensing Applications: Society and Environment, 15, 100251.

Grove, J., & Ellis, B. (1980). Extractable chromium as related to soil pH and applied chromium. Soil Science Society of America Journal, 44(2), 238-242.

Hawkesford, M. J., Kopriva, S., & De Kok, L. J. (2016). Nutrient use efficiency in plants.

Humphrey, Osano, O., Aura, C. M., Marriott, A. L., Dowell, S. M., Blake, W. H., & Watts, M. J. (2022). Evaluating spatio-temporal soil erosion dynamics in the Winam Gulf catchment, Kenya for enhanced decision making in the land-lake interface. J Science of The Total Environment, 815, 151975.

Humphrey., S., O., Osano, O., Cave, M., Menya, D., & Watts, M. J. (2022). Western Kenya Soil Geochemistry. British Geological Survey. Retrieved 16/03/2023 from

Hurst, R., Siyame, E. W., Young, S. D., Chilimba, A. D., Joy, E. J., Black, C. R., Ander, E. L., Watts, M. J., Chilima, B., & Gondwe, J. J. S. r. (2013). Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi. 3(1), 1425.

Johnson, D. R., & Scientist, S. (1993). Soil survey of Jackson County area, Oregon. US Department of Agriculture, Soil Conservation Service.

Joy, E. J., Ander, E. L., Young, S. D., Black, C. R., Watts, M. J., Chilimba, A. D., Chilima, B., Siyame, E. W., Kalimbira, A. A., & Hurst, R. J. P. p. (2014). Dietary mineral supplies in Africa. 151(3), 208-229.

Karlen, D. L., Hurley, E. G., Andrews, S. S., Cambardella, C. A., Meek, D. W., Duffy, M. D., & Mallarino, A. P. J. A. j. (2006). Crop rotation effects on soil quality at three northern corn/soybean belt locations. 98(3), 484-495.

Kaur, P., Stoltzfus, J., & Yellapu, V. J. I. J. o. A. M. (2018). Descriptive statistics. 4(1), 60.

Khosravi Aqdam, K., Asadzadeh, F., Momtaz, H. R., Miran, N., Zare, E. J. E. M., & Assessment. (2022). Digital mapping of soil erodibility factor in northwestern Iran using machine learning models. 194(5), 1-13.

KNBS. (2019). 2019 Kenya Population and Housing Census Results.

Kononova, M. a. M. (2013). Soil organic matter: its nature, its role in soil formation and in soil fertility. Elsevier.

Lauzon, J. D., O'Halloran, I. P., Fallow, D. J., von Bertoldi, A. P., & Aspinall, D. (2005). Spatial variability of soil test phosphorus, potassium, and pH of Ontario soils. Agronomy Journal, 97(2), 524-532.

Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60-68.

Liu, C., Li, W., Lin, B., Yi, S., Ye, B., Mi, H., Li, J., Wang, J., Li, X. J. J. o. F. P., & Preservation. (2021). Effects of ozone water rinsing on protein oxidation, color, and aroma characteristics of grass carp (Ctenopharyngodon idellus) surimi. 45(10), e15811.

Liu, G., & Hanlon, E. (2012). Soil pH range for optimum commercial vegetable production. In Nutrient Management of Vegetable and Row Crops Handbook (pp. 126-136). University of Florida press Gainesville, FL, USA.

Man, M., Wagner-Riddle, C., Dunfield, K. E., Deen, B., Simpson, M. J. J. S., & Research, T. (2021). Long-term crop rotation and different tillage practices alter soil organic matter composition and degradation. 209, 104960.

Mäser, P., Gierth, M., & Schroeder, J. I. (2002). Molecular mechanisms of potassium and sodium uptake in plants. Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium: Food security and sustainability of agro-ecosystems through basic and applied research,

Mulinge, W., Gicheru, P., Murithi, F., Maingi, P., Kihiu, E., Kirui, O. K., & Mirzabaev, A. (2016). Economics of land degradation and improvement in Kenya. In Economics of land degradation and improvement–A global assessment for sustainable development (pp. 471-498). Springer, Cham.

Ndakidemi, P. A., Bambara, S., & Makoi, J. H. (2011). Micronutrient uptake in common bean ('Phaseolus vulgaris' L.) as affected by Rhizobium inoculation, and the supply of molybdenum and lime. Plant Omics, 4(1), 40-52.

Ndung’u, P., Bebe, B., Ondiek, J., Butterbach-Bahl, K., Merbold, L., & Goopy, J. J. A. P. S. (2020). Corrigendum to: Improved region-specific emission factors for enteric methane emissions from cattle in smallholder mixed crop: livestock systems of Nandi County, Kenya. 60(13), 1668-1668.

Nkonya, E., Mirzabaev, A., & Braun, J. v. (2016). Economics of land degradation and improvement: an introduction and overview. In Economics of land degradation and improvement–a global assessment for sustainable development (pp. 1-14). Springer, Cham.

Owino, J., Wandiga, S., Olago, D., & Oghaiki, A. N. (2020). A Cluster Analysis of Variables Essential for Climate Change Adaptation of Smallholder Dairy Farmers of Nandi County Kenya.

Peng, X., Shi, D., Jiang, D., Wang, S., & Li, Y. J. C. (2014). Runoff erosion process on different underlying surfaces from disturbed soils in the Three Gorges Reservoir Area, China. 123, 215-224.

Pimentel, D. (2006). Soil erosion: a food and environmental threat. Environment, development and sustainability, 8(1), 119-137.

Quinton, J. N., Govers, G., Van Oost, K., & Bardgett, R. D. (2010). The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 3(5), 311-314.

Rakshit, A., Singh, H. B., & Sen, A. (2015). Nutrient use efficiency: from basics to advances. Springer.

Randall, G., Schulte, E., & Corey, R. (1976). Correlation of plant manganese with extractable soil manganese and soil factors. Soil Science Society of America Journal, 40(2), 282-287.

Ruan, J., Ma, L., Shi, Y., & Han, W. (2004). The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.). Annals of Botany, 93(1), 97-105.

Saljnikov, E., Lavrishchev, A., Römbke, J., Rinklebe, J., Scherber, C., Wilke, B.-M., Tóth, T., Blum, W. E., Behrendt, U., & Eulenstein, F. J. A. i. U. S. D. (2022). Understanding and monitoring chemical and biological soil degradation. 75-124.

Sharpley, A. N., & Smith, S. (1990). Phosphorus transport in agricultural runoff: the role of soil erosion. Soil erosion on agricultural land. Proceedings of a workshop sponsored by the British Geomorphological Research Group, Coventry, UK, January 1989.,

Taalab, A., Ageeb, G., Siam, H. S., & Mahmoud, S. A. J. M. E. J. (2019). Some Characteristics of Calcareous soils. A review AS Taalab1, GW Ageeb2, Hanan S. Siam1 and Safaa A. Mahmoud1. 8(1), 96-105.

Thomason, W. (2002). Understanding Phosphorus Behavior in Soils. The Samuel Roberts Noble Foundation.

Trentin, E., Cesco, S., Pii, Y., Valentinuzzi, F., Celletti, S., Feil, S. B., Zuluaga, M. Y. A., Ferreira, P. A. A., Ricachenevsky, F. K., & Stefanello, L. O. (2022). Plant species and pH dependent responses to copper toxicity. Environmental and Experimental Botany, 196, 104791.

Vieira, R., Paula Jr, T., Pires, A., Carneiro, J., & da Rocha, G. (2011). Common bean seed complements molybdenum uptake by plants from soil. Agronomy Journal, 103(6), 1843-1848.

Wang, M., Yang, Y., & Chen, W. (2018). Manganese, zinc, and pH affect cadmium accumulation in rice grain under field conditions in southern China. Journal of environmental quality, 47(2), 306-311.

Watts, M. J., Button, M., Brewer, T. S., Jenkin, G. R., & Harrington, C. F. (2008). Quantitative arsenic speciation in two species of earthworms from a former mine site. Journal of Environmental Monitoring, 10(6), 753-759.

Watts, M. J., Middleton, D. R., Marriott, A. L., Humphrey, O. S., Hamilton, E. M., Gardner, A., Smith, M., McCormack, V. A., Menya, D., & Munishi, M. O. (2019a). Source apportionment of micronutrients in the diets of Kilimanjaro, Tanzania and Counties of Western Kenya. Scientific Reports, 9(1), 1-14.

Watts, M. J., Middleton, D. R., Marriott, A. L., Humphrey, O. S., Hamilton, E. M., Gardner, A., Smith, M., McCormack, V. A., Menya, D., & Munishi, M. O. J. S. R. (2019b). Source apportionment of micronutrients in the diets of Kilimanjaro, Tanzania and Counties of Western Kenya. 9(1), 1-14.

Wood, S. A., Sokol, N., Bell, C. W., Bradford, M. A., Naeem, S., Wallenstein, M. D., & Palm, C. A. J. E. A. (2016). Opposing effects of different soil organic matter fractions on crop yields. 26(7), 2072-2085.

Yego, E. K., Kebenei, S. J., Cheserek, G. J., Sitienei, A. J. J. K. J. o. R., & Innovation. (2018). Impacts of organizational dynamics in artisanal gold mining on community livelihoods: Case of Nandi County, Kenya. 5(2), 89-99.

Zhang, J.-L., Flowers, T. J., & Wang, S.-M. (2010). Mechanisms of sodium uptake by roots of higher plants. Plant and Soil, 326, 45-60.

Zhang, Z., Xu, W., Li, L., Huang, J., Deng, L., & Wang, Q. J. J. o. C. P. (2021). Effects of temporal conservation measures on water erosion processes of disturbed soil accumulation in construction projects. 319, 128612.

Zhao, C., Ren, J., Xue, C., Lin, E. J. P., & Soil. (2005). Study on the relationship between soil selenium and plant selenium uptake. 277, 197-206.
How to Cite
Isaboke, J., Odipo, O., Humphrey, O., Dowell, S., & Watts, M. (2023, May 5). The Nutritional Quality of Forage Grass Changes Due to Changing Soil Chemistry Resulting from Different Land-Use Management in the Oroba Valley, Kenya. African Journal of Education,Science and Technology, 7(3), Pg 40-54.