A systematic review of Datura stramonium as a potential biocide for mosquito control

  • Okumu Naomi School of Science, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
  • Chemoiwa Emily School of Science, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
  • Salina Rono School of Science, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
  • Wanjala Fredrick School of Science, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
Keywords: Biocide, Datura stramonium, Resistant Malaria Vectors.

Abstract

Global burden of malaria reduction has been significantly slowed down by malaria vectors developing resistance to conventional chemical pesticides currently in use. Anopheles mosquitoes, which are malaria vectors, have over time developed coping mechanisms which can enable them to detoxify poisonous chemical pesticides meant to kill them consequently threatening the effectiveness of such control measures. Coupled with the danger of the chemical pesticides on the environment, attention is shifting to natural products that would successfully control malaria vectors particularly those that have developed bacteria-mediated resistance to conventional pesticides currently in use. A web-based literature search using scientific databases was explored to find data on the insecticidal and antibacterial properties of Datura stramonium. This was prompted by a dearth of information on alternative bio-pesticides that are cost-effective, eco-friendly, and with high toxicity on vectors. This review evaluated the potential of extracts of D. stramonium in different solvents as a biocide. A lot of research on D. stramonium extracts has focused more on its potential as a medicinal plant rather than as a biocide. This review outlines research evidence that D. stramonium has phytochemicals and bio-active compounds which are antibacterial, insecticidal, and anti-malarial.  Not much studies have been done with Anopheles gambiae of confirmed resistance and its inhibition effect on mosquito bacterial community is not fully understood.

References

Abongo, B., Yu, X., Donelly, M.J., Geire, M., Gibson, G., Gimnig, J, Kuile, F., Lobo N.F., Ochomo, E., Munga, S., Ombok, M., Samuels A., Torr, S.J. and Hawkes, F.M. (2018). Host Decoy Trap (HDT) with cattle odour is highly effective for collection of exophagic malaria vectors. Parasites and vectors 11: 533.https://doi.org/10.1186/s13071-018-3099-7

Ahmed, I. A., Shabab Nasir, S. N., Iqra Yousaf, I. Y., Bilal Ahmad, B. A., Sumbal Zafar, S. Z. and Aqib Javaid, A. J. (2019). Plant extracts along with selective chemicals and Bacillus thuringiensis israelensis: a novel approach to tackle the problem of insecticidal resistance in mosquitoes.

Akorli, J., Gendrin, M., Pels, N.A.P., Yeboah-Manu, D., Christophides, G.K. and Wilson, M.D. (2016). Seasonality and locality affect the diversity of Anopheles gambiae and Anopheles coluzzii midgut microbiota from Ghana. PLoS One 11:e0157529. doi: 10.1371/journal.pone.0157529

Al-Ajmi, E., Al-Azabِ. and Mohammed, M. (2021). Morphological Effects of Some Plant Extracts on Mosquito Larvae of Dengue Fever Vector Aedes aegypti (Diptera) from Al-Hodeidah Governorate-Yemen. Al-Razi University Journal for Medical Sciences, 5(1). https://doi.org/10.51610/rujms5.1.2021.87

Al-Snafi, A.E. (2017). Medical Importance of Datura fastuosa (Syn: Datura metel) and Datura stramonium—A Review. IOSR J. Pharm. 2017, 7, 43–58.

Arruda, A., Ferreira, G., Júnior, A., Matos, N., Carvalho, T., Ozaki, L., Stabeli, R. and E Silva, A. (2021). Diversity of Culturable Bacteria Isolated from the Feces of Wild Anopheles darlingi (Diptera: Culicidae) Mosquitoes from the Brazilian Amazon. Journal of Medical Entomology. 58. 10.1093/jme/tjab028.

Asrar M, Bakht I, Rasool B, Hussain S, Hussain D. and Javed Z. Efficacy and toxicity of different plant extracts over the period of time in Bracon hebetor (Say) (Hymenoptera: Braconidae). Heliyon. 2023 Oct 26;9(11):e21631. doi:10.1016/j.heliyon.2023.e21631. PMID: 38027796; PMCID: PMC10643269.

Asadollahi, A., Khoobdel, M., Zahraei-Ramazani, A., Azarmi, S. and Mosawi, S. H. (2019). Effectiveness of plant-based repellents against different Anopheles species: a systematic review. Malaria journal, 18(1), 436. https://doi.org/10.1186/s12936-019-3064-8.

Afolabi, O. J., Simon-Oke, I. A., Elufisan, O. O. and Oniya, M. O. (2018). Adulticidal and repellent activities of some botanical oils against malaria mosquito: Anopheles gambiae (Diptera: Culicidae). Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 135-138.

Ayala, D., Akone-Ella, O., Rahola, N., Kengne, P., Ngangue, M.F., Mezeme, F., Makanga, B.K., Nigg, M., Costantini, C., Simard, F., Prugnolle, F., Roche, B., Duron, O. and Paupy, C. (2019). Natural Wolbachia infections are common in the major malaria vectors in Central Africa. Evol Appl. Jun 11;12(8):1583-1594. doi:10.1111/eva.12804. PMID: 31462916; PMCID: PMC6708434.

Ayodele, P.F., Adeniyi, I.A, Bamigbade, A.T, Omowaye, O. S., Seweje, A.J. and Adejo, M.E. (2024). Molecular Simulation of bioactives from Jimsonweed (Datura stramonium) against Plasmodium falciparum- gluthione-S-tranferase. Drug Discovery, 18. 38dd1972

Bahia, A.C., Dong, Y., Blumberg, B.J., Mlambo, G., Tripathi, A., BenMarzouk- Hidalgo, O.J., Chandra R., and Dimopoulus, G. (2014). Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environ. Microbiol. 16, 2980–2994. doi: 10.1111/1462-2920.12381.

Barnard, K., Jeanrenaud, A. C. S. N., Brooke, B. D., and Oliver, S. V. (2019). The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Sci. Rep. 2019; 9:9117.doi: 10.1038/s41598-019- 45499-z

Baldini, F., Segata, N., Pompon, J., Marcenac, P., Shaw, W.R., Dabiré, R.K., Diabaté, A., Levashina, E.A., and Catteruccia, F. (2014). Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nat Commun. Jun 6;5:3985. doi: 10.1038/ncomms4985. PMID: 24905191; PMCID: PMC4059924.

Bando, H., Okado, K., Guelbeogo, W., Badolo, A., Aonuma, H., Nelson, B., Fukumoto, S., Xuan, X., Sagnon, N., and Kanuka, H. (2013). Intra-specific diversity of Serratia marcescens in Anopheles mosquito mid-gut defines Plasmodium transmission capacity. Scientific reports. 3. 1641. 10.1038/srep01641

Bazaoui, A., Bellimam, M. and Soulaymani, A. (2012). Tropane Alkaloids of Datura innoxia from Morocco. Zeitschrift für Naturforschung C, 67(1-2), 8-14. https://doi.org/10.1515/znc-2012-1-202

Bonizzoni, M., Afrane, Y., Dunn, W.A., Atieli F.K. and Zhou, G. (2012) Comparative transcriptome analyses of deltamethrin-resistant and susceptible Anopheles gambiae mosquitoes from Kenya by RNA-Seq. PLoS ONE; 7:e446

Bussmann, R.W., Paniagua-Zambrana, N.Y. and Njoroge, G.N. (2020). Datura stramonium L. SOLANACEAE. In: Bussmann, R.W. (eds) Ethnobotany of the Mountain Regions of Africa. Ethnobotany of Mountain Regions. Springer, Cham. https://doi.org/10.1007/978-3-319-77086-4_62-1

Bhakta, G. and Subedi, L. (2013). A review on the pharmacological and toxicological aspects of Datura stramonium L. Journal of Integrative Medicine. 11. 73-79. 10.3736/jintegrmed2013016.

Borah, R., Kalita, M. C., Goswami, R. C. H. and Talukdar, A. K. (2012). Larvicidal efficacy of crude seed extracts of six important oil yielding plants of north east India against the mosquitoes Aedes aegypti and Culex quinquefasciatus. J Biofertil Biopestici, 3(2), 2-4.

CGAIR, Research Programme on Forest trees and Agroforest (2012) June.

Cirimotich, C. M., Dong, Y., Clayton, A. M., Sandiford, S. L., Souza-Neto, J. A., Mulenga, M. and Dimopoulos, G. (2011). Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae.Science 332, 855, 858. doi:10.1126/science.1201618;PMID: 21566196; PMCID: PMC4154605.

Dada, N., Lol, J.C., Benedict, A.C., López, F., Sheth, M., Dzuris, N., Padilla, N. and Lenhart, A. (2019). Pyrethroid exposure alters internal and cuticle surface bacterial communities in Anopheles albimanus. ISME J. 2019 Oct;13(10):2447-2464. doi:10.1038/s41396-019-0445-5. Epub. Jun 6. PMID: 31171859; PMCID: PMC6776023.

Dada, N., Sheth, M., Liebman, K., Pinto, J. and Lenhart, A. (2018). Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Sci. Rep. 8:2084. doi: 10.1038/s41598-018-20367-4

Damiani, C., Ricci, I., Crotti, E., Rossi, P., Rizzi, A., Scuppa, P., Capone, A., Ulissi, U., Epis, S., Genchi, M., Sagnon, N., Faye, I., Kang, A., Chouaia, B., Whitehorn, C., Moussa, G.W., Mandrioli, M., Esposito, F., Sacchi, L., Bandi, C., Daffonchio, D. and Favia, G. (2010). Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol. 2010 Oct;60(3):644-54. doi: 10.1007/s00248-010-9704-8. Epub 2010 Jun 23. PMID: 20571792.

Damergi, B., Essid, R., Fares, N., Khadraoui, N., Ageitos, L., Ben, A.A., Gharbi, D., Abid I., Rashed A.M., Limam, F., Rodríguez, J., Jiménez, C. and Tabbene, O. (2023). Datura stramonium Flowers as a Potential Natural Resource of Bioactive Molecules: Identification of Anti-Inflammatory Agents and Molecular Docking Analysis. Molecules.Jul 4;28(13):5195. doi:10.3390/molecules28135195. PMID: 37446858; PMCID: PMC10343631.

Djibril, D., Mamadou, F., Gérard, V., Codou, G.M.D., Oumar, S. and Luc, R. (2015). Physical characteristics, chemical composition and distribution constituents of the neem seeds (Azadirachta indica a. Juss) collected in Senegal. Research Journal of Chemistry Science. 5(7):52-58

Djihinto, O.Y., Medjigbodo, A.A., Gangbadja, A.R.A., Saizonou, H.M., Lagnika, H.O., Nanmede, D., Djossou, L., Bohounton, R., Sovegnon, P.M., Fanou, M.J., Agonhossou, R., Akoton, R., Mousse, W. and Djogbénou, L.S. (2022). Malaria-Transmitting Vectors Microbiota: Overview and Interactions with Anopheles Mosquito Biology. Front Microbiol. May 20;13:891573. doi: 10.3389/fmicb.2022.891573. PMID: 35668761; PMCID: PMC9164165El

Elhaj, W. E., Osman, A. A. and Elawad, L. M. E. (2021). Insecticidal activity of Cyperus rotundus L. and Datura stramonium L. Co-Administered with sesame oil against African bollworm Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Journal of Agronomy Research, 3(4), 1-8.

E Silva, B., Matsena Zingoni, Z., Koekemoer, L.L. and Dahan-Moss, Y.L. (2021). Microbiota identified from preserved Anopheles.Malar. J. 20:230. doi: 10.1186/s12936-021-03754-7

Ezemuoka, L.C., Akorli, E.A., Aboagye-Antwi, F. and Akorli, J. (2020). Mosquito midgut Enterobacter cloacae and Serratia marcescens affect the fitness of adult female Anopheles gambiae s.l. PLoS One 15:e0238931. doi: 10.1371/journal. pone.0238931

Eukubay, A., Getu, E., Debebe, E. et al. Larvicidal potential of some plant extracts against Anopheles arabiensis Patton (Diptera: Culicidae). Int J Trop Insect Sci 41, 479–485 (2021). https://doi.org/10.1007/s42690-020-00229-

Favia, G., Ricci, I., Damiani, C., Raddadi, N., Crotti, E., Marzorati, M., Rizzi , A., Urso, R., Brusetti, L., Borin, S., Mora, D., Scuppa, P., Pasqualini, L., Clementi, E., Genchi, M., Corona, S., Negri, I., Grandi, G., Alma, A. and Daffonchio, D., (2007). Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proceeding of the National Academy of Science of the U.S.A. 104, 9047–9051.doi: 10.1073/pnas.0610451104

Feng, Y., Tang, J., Zhu, D., Zhang, Y., Zhu, G. and Akorli Wang, J. (2021). The microbiota of three Anopheles species in China. J. Am. Mosq. Control Assoc. 37, 38–40. doi: 10.2987/20-6940

Gendrin, M. and Christophides, G. K. (2013). “The Anopheles mosquito microbiota and their impact on pathogen transmission,” in Anopheles mosquitoes - New Insights into Malaria Vectors, ed. S. Manguin (London: InTech). doi: 10.5772/55107

Gomes, F.M., Hixson, B.L., Tyner, M.D.W., Ramirez, J.L., Canepa, G.E., Alves, E Silva T.L., Molina-Cruz, A., Keita, M., Kane, F., Traoré, B., Sogoba, N. and Barillas-Mury, C. (2017). Effect of naturally occurring Wolbachia in Anopheles gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria transmission. Proc Natl Acad Sci U S A. Nov 21;114(47):12566-12571. doi: 10.1073/pnas.1716181114. Epub Nov 7. PMID: 29114059; PMCID: PMC5703331.

Goyal, M. H. and Shinde, L. V. (2020). Mosquito larvicidal efficacy of methanolic extract from seeds of Datura inoxia Mill against Aedes aegypti (Linn.) with insight into GC-MS analysis. Journal of Entomological Research, 44(1), 107-112.

Gupta, S., Chaubey, K.K., Khandelwal, V., Sharma, T. and Singh, S.V. (2021). Datura Stramonium: An Overview of Its Antioxidant System for Plant Benefits. In: Singh, H.B., Vaishnav, A., Sayyed, R. (eds) Antioxidants in Plant-Microbe Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-16-1350-0_22

Gupta, L., Molina-Cruz, A., Kumar, S., Rodrigues, J., Dixit, R., Zamora, R. and Barillas-Mury, C., (2009). The STAT pathway mediates late-phase immunity against Plasmodium in the mosquito Anopheles gambiae. Cell Host Microbe 5, 498–507. doi: 10.1016/ j.chom.2009.04.003

Grant, R.J., Daniell, T.J. and Betts, W.B. (2002). Isolation and identification of synthetic pyrethroid-degrading bacteria. J Appl Microbiol. 2002;92:534–40. doi: 10.1046/j.1365-2672.2002.01558.x.

Hu, G.P., Zhao, Y., Song, F.Q., Liu, B., Vasseur, L., Douglas, C., and You, M.S. (2014). Isolation, identification and cyfluthrin-degrading potential of a novel Lysinibacillus sphaericus strain, FLQ-11-1. Res Microbiol. Feb-Mar;165(2):110-8. doi:10.1016/j.resmic.2013.11.003. Epub 2013 Nov 26. PMID: 24287233.

Iqbal, A. (2019). Effect of different solvent extracted samples from the leaves and fruits of Datura stramonium on the growth of bacteria and fungi. Pakistan Journal of Pharmaceutical Sciences.20.

Jemberie, W., Tadie, A., Enyew, A., Debebe, A. and Raja, N. (2016). Repellent activity of plant essential oil extracts against malaria vector Anopheles arabiensis Patton (Diptera: Culicidae). ENTOMON, 41(2), 91–98. https://doi.org/10.33307/entomon.v41i2.166

Juss, A., Porfirio E.D., Aparecida, M.M.M., Humberto, J.F, de Fátima, V., and de Moura M. (2015). Phytochemical and pharmacological aspects of meliaceae and Azadirachta indica. International Journal of Latest Research Science Technology. (4):128-35 http://www.mnkjournals.com/ijlrst.htm

Kirar, M., Singh, H., Singh, S.P. and Neelam, H. (2023). Identification of Novel Protein from Datura stramonium Leaves with Bioinsecticide Potential Against Anopheles Stephensi. Int J Pept Res Ther 29, 49 (2023). https://doi.org/10.1007/s10989-023-10521-6

Krajacich, B. J., Huestis, D. L., Dao, A., Yaro, A. S., Diallo, M., Krishna, A., Xu, J., and Lehman, T. (2018). Investigation of the seasonal microbiome of Anopheles coluzzii mosquitoes in Mali. PLoS One 13:e0194899. doi:10.1371/journal.pone.0194899

Maheshwari, N.O., Khan, A. and Chopade, B.A. (2013). Rediscovering the medicinal properties of Datura 440 sp.: A review. Journal of Medicinal Plants Research. 7(39):2885-2897

Mathias D.K., Ochomo, E., Atieli, F., Ombok, M., Bayoh, M.N., Olang. G., Muhia, D., Kamau, L., Vulule, J.M, Hamel, M.J. Hawley, W.A., Wlaker, E.D. and Gimnig J.E. (2011) Spatial and temporal variation in the kdr allele L1014S in Anopheles gambiae s.s. and phenotypic variability in susceptibility to insecticides in Western Kenya. Malar J.;10:10

Mohamed, A.AA., Mutaman A., Kehail, A., Hilmi, Z.A., Homida, A.E. and Abdelrahim, Y.M. (2022). Evaluation of bio-insecticidal capacity of datura (Datura stramonium L.) leaves and flowers using GC-MS and phytochemical techniques. International Journal of Phytology Research, 2(2), 01–05. Retrieved from https://www.dzarc.com/phytology/article/view/80

Mukherjee, S.O. (2013). Datura stramonium: An overview of its phytochemistry and pharmacognosy. Research J. Pharmacognosy and Phytochemistry. 5. 143-148.

Niang, E. H. A., Bassene, H., Makoundou, P., Fenollar, F., Weill, M. and Mediannikov, O. (2018). First report of natural Wolbachia infection in wild Anopheles funestus population in Senegal. Malar. J. 17:408. doi: 10.1186/s12936-018-2559-z

Ochomo, E., Subramaniam, K., Kemei, B., Rippon, E., Bayoh, N.M., Kamau, L., Atieli, F., Vulule, J.M., Ouma, C., Gimnig, J., Donelly J.M. and Mbogo, C. (2015). Presence of the knockdown resistance mutation, Vgsc-1014F in Anopheles gambiae and An. arabiensis in western Kenya. Parasites and Vectors;8:616.

Ochomo, E., Milanoi, S., Abongo, B., Onyango, B., Muchoki, M., Omoke, D., Olanga, E., Njoroge, L., Juma, E., Otieno, J., Muhia, D., Kamau, L., Rafferty, C., Gimnig, J., Shieshia, M., Wacira, D., Mwangangi, J., Maia, M., Chege, C. and Kariuki, L. (2023). Detection of Anopheles stephensi Mosquitoes by Molecular Surveillance, Kenya. Emerging infectious diseases. 29. 10.3201/eid2912.230637.

Omoke, D., Kipsum, M., Otieno, S., Esalimba E., Sheth M., Lenhart A., Njeru E.M., Ochomo E. and Dada N. (2021). Western Kenyan Anopheles gambiae showing intense permethrin resistance harbor distinct microbiota. Malar J 20, 77 (2021). https://doi.org/10.1186/s12936-021-03606-4

Ondeto, B.M,C., Kamau, L., Muria, S.M., Mwangangi, J.M., Njagi, K., Mathenge, E.M., Ochanda, H. and Mbogo, C.M. (2017). Current status of insecticide resistance among malaria vectors in Kenya. Parasites and Vectors 10:429.

Olajide J. A.i, Iyabo A. S., Oluwadoyinsolami O. E., Mobolanle O. O. (2018). Adulticidal and repellent activities of some botanical oils against malaria mosquito: Anopheles gambiae (Diptera: Culicidae). Beni-Suef University Journal of Basic and Applied Sciences, Vol. 7, Issue 1, Pages 135-138. ISSN:2314-8535,https://doi.org/10.1016/j.bjbas.2017.09.004. (https://www.sciencedirect.com/science/article/pii/S2314853517301580)

Olofintoye, L. K., Simon-Oke, I. A., and Omoregie, O. B. (2011). Larvicidal properties of Datura stramonium (jimson weed) and Nicotiana tabaccum (tobacco) extracts against the larvae of (Anopheles and Culex) mosquitoes. African research review, 5(2).

Owoeye, J. A., Akawa, O. B., Akinneye, J. O., Oladipupo, S. O. and Akomolede, O. E. (2016). Toxicity of Three Tropical Plants to Mosquito Larvae, Pupae and Adults. Journal of Mosquito Research, 6.

Pelloquin, B., Kristan, M., Edi, C., Meiwald, A., Clark, E., Jeffries, C. L,, Walker, T., Dada, N., and Messenger, L.A., (2021). Overabundance of Asaia and Serratia Bacteria Is Associated with Deltamethrin Insecticide Susceptibility in Anopheles coluzzii from Agboville, Côte d'Ivoire. Microbiol Spectr. Oct 31;9(2): e0015721. doi: 10.1128/Spectrum.00157-21. Epub 2021 Oct 20. PMID: 34668745; PMCID: PMC8528120.27.

Rajasekaran, A., and Duraikannan, G. (2012). Larvicidal activity of plant extracts on Aedes aegypti L. Asian Pacific Journal of Tropical Biomedicine, 2(3), S1578-S1582.

Rani, A., Sharma, A., Rajagopal, R., Adak, T., and Bhatnagar, R.K (2009). Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol. May 19;9:96. doi: 10.1186/1471-2180-9-96. PMID: 19450290; PMCID: PMC2698833.

Rehman, S., Ullah, N., Jaffer, D., Zaidi, R. and Anwar, H. (2022). Light and scanning electron microscopy of Datura stramonium L. extract and its biological applications. Microscopy Research and Technique. 85. 10.1002/jemt.24148.

Rocha, E.M., Marinotti, O., Serrão. D.M., Correa, L.V., de Melo, Katak, R., de Oliveira, J.C., Muniz, V.A., de Oliveira M.R., do Nascimento, Neto, J.F., Pessoa, M.C.F., Roque, R.A., da Mota, A.J., Souza-Neto, J.A., Terenius, O. and Tadei W.P. (2021). Culturable bacteria associated with Anopheles darlingi and their paratransgenesis potential. Malar J.20:40.doi: 10.1186/s12936-020-03574-1.

Saab, S. A., Dohna, H. Z., Nilsson, L. K. J., Onorati, P., Nakhleh, J., Terenius, O. and Osta, M. (2020). The environment and species affect gut bacteria composition in laboratory co-cultured Anopheles gambiae and Aedes albopictus mosquitoes. Sci. Rep. 10:3352. doi:10.1038/s41598-020- 600756

Shane, J. L., Grogan, C. L., Cwalina, C. and Lampe, D. J. (2018). Blood meal- induced inhibition of vector-borne disease by transgenic microbiota. Nat. Commun. 9:4127. doi: 10.1038/s41467-018- 06580-9

Sharma, M., Dhaliwal, I., Rana, K., Delta, A.K. and Kaushik, P. (2021). Phytochemistry, Pharmacology, and Toxicology of Datura Species—A Review. Antioxidants. 10:1291. doi: 10.3390/antiox1008129.

Srivastava, N., Khandalgle, A., Morey, R. and Raut, K. (2023). CGMS analysis and mosquitocidal effects of petroleum ether extracts of Datura stramonium and Morus alba against Aedes aegypti.

Srivastava, N., Khandagle, A., Morey, R. and Raut, K. (2022). Characterization of Some Medicinal Plants and Their Role in Mosquito Control. Egyptian Academic Journal of Biological Sciences, E. Medical Entomology and Parasitology, 14(2), 189-197. doi: 10.21608/eajbse.2022.278085

Satish, P.V.V., Kumari, D. and Sunita, K. (2018). Antimalarial Efficacy of Datura stramonium against Chloroquine sensitive Plasmodium falciparum 3D7 strain. ejpmr, 5(3). 287-294. www.ejpmr.com

Soltani, A., Vatandoost, H., Oshaghi, M.A., Enayati, A.A. and Chavshin, A.R. (2017). The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides. Pathog. Glob. Health 111, 289–296. doi:10.1080/20477724.2017.1356052

Soni, P., Siddiqui, A.A., Dwivedi, J. and Soni, V. (2012). Pharmacological properties of Datura stramonium L. as a potential medicinal tree: An overview. Asian Pac. J. Trop. Biomed. 2:1002–1008. doi: 10.1016/S2221-1691(13)60014-3.

Swathi, S. (2012). Larvicidal and Repellent Activities of Ethanolic Extract of Datura stramonium Leaves against Mosquitoes. Int. J. Pharmacogn. Phytochem. Res. 4, 25–27

Swathi, S., Murugananthan, G. and Ghosh, S. K. (2010). Oviposition deterrent activity from the ethanolic extract of Pongamia pinnata, Coleus forskohlii, and Datura stramonium leaves against Aedes aegypti and Culex quinquefaciatus. Pharmacognosy magazine, 6(24), 320–322. https://doi.org/10.4103/0973-

Takhi, D. and Ouinten, M. (2011). Study of antimicrobial activity of secondary metabolites extracted 425 from spontaneous plants from the area of Laghouat, Algeria. Adv Environm 426 Biol.;5(2):469–476.

Ullah, Z., Ijaz A., Mughal, T.K., and Zia, K., (2018). Larvicidal activity of medicinal plan Extracts against Culex quinquefasciatus Say. (Culicidae, Diptera). International Journal of Mosquito research; 5(2):47-51, ISSN: 2348-5906; CODEN: IJMRK2.

Wang, M., An, Y., Gao, L., Dong, S., Zhou, X., Feng, Y., Wang, P., Dimopoulos, G., Tang, H. and Wang, J. (2021). Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito mid-gut pH. Cell Rep. 35:108992. doi: 10.1016/j.celrep.2021.108992

Wang, Y., Gilbreath, T. M. III, Kukutla, P., Yan, G., and Xu, J. (2011). Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6:e24767. doi: 10.1371/journal.pone.002476

Waleed E.E., Abdelgadir A.O. and Loai M.E.E (2021) Insecticidal Activity of Cyperus rotundus L. and Datura stramonium L. Co-Administered with Sesame Oil Against African Bollworm Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Journal of Agronomy Research - 3(4):1-8.

Wong, M.L., Liew, J.W.K., Wong, W.K., Pramasivan, S., Hassan, N.M., Sulaiman, W.Y., N.K., Leong, C.H., Van Lun, L.L. and Indra, V. (2020). Natural Wolbachia infection in field-collected Anopheles and other mosquito species from Malaysia. Parasites and Vectors. 13. 10.1186/s13071-020-04277-x.

World Health Organization. (‎2023)‎. WHO guidelines for malaria, 14 March 2023. World Health Organization. https://apps.who.int/iris/handle/10665/366432. License: CC BY-NC-SA 3.0 IGO

Wu, P.W., Liu, Y., and Wang, Z.Y., Zhang, X.Y., Li, H., Liang, W.Q., Luo, N. Hu, J.M., Lu, J.Q., Luan, T.G. and Cao, L.X. (2006). Molecular Cloning, Purification, and Biochemical Characterization of a Novel Pyrethroid-Hydrolyzing Esterase from Klebsiella sp. Strain ZD112. Journal of agricultural and food chemistry. 54. 836-42. 10.1021/jf052691u.
Published
2024-10-25
How to Cite
Naomi, O., Emily, C., Rono, S., & Fredrick, W. (2024, October 25). A systematic review of Datura stramonium as a potential biocide for mosquito control. African Journal of Education,Science and Technology, 8(1), Pg. 96-114. https://doi.org/https://doi.org/10.2022/ajest.v8i1.1064
Section
Articles