Spatial-Temporal Occurrence of Sea Urchins and their Grazing along Diani-Chale Lagoonal Reefs, Mombasa

  • Nancy Sergon Department of Biological Sciences, University of Eldoret, P.O. Box 1125-30100 Eldoret, Kenya
  • Emily J. Chemoiwa Department of Biological Science, University of Eldoret, P.O Box 1125-30100, Eldoret, Kenya
  • Josephine Mulei Department of Biological Science, University of Eldoret, P.O Box 1125-30100, Eldoret, Kenya
Keywords: Sea urchins, Seagrass, Abundance, Density, Diversity, Overgrazing


Seagrass plays a key role in coastal ecosystems influencing environmental abiotic parameters and supporting a great abundance and diversity of species belonging to many phyla. Overgrazing by herbivores has been postulated as a potential threat to seagrass in Kenya. Indirectly, fishing may result in sea urchin outbreaks caused by removal of sea urchin predators. Therefore the purpose of this study was to determine the spatial and temporal occurrence of sea urchins and grazing on seagrass along Diani lagoonal reefs, in Kwale. Three sites, namely, Mvuleni, Chale, and Mwaepe, were selected and quadrats randomly used in sampling sea urchins and seagrass. Moreover, healthy and degraded sections were identified in each of the selected sites and 40 samples were obtained from each study site and for each season using one-meter square quadrats (N = 360). Descriptive statistics and inferential statistics were applied in determining abundance, density, and diversity of sea urchins and their seasonal and temporal influence on seagrass cover. Research findings indicated that the abundance and diversity of sea urchins and seagrass varied according to seasons. The density of sea urchins was highest during the northeast monsoon and more degraded habitats when compared to healthy ones. Regression outcome demonstrated that the density of sea urchins was statistically significant negative predictor (r = -0.699) of the proportion of seagrass cover and accounted for 48.8% of variation. Therefore, the study concludes that sea urchins are major macro-grazers that contribute to overgrazing and degradation of the seabed. This study recommends further studies to identify specific biotic and abiotic factors that affect their distributions, employ longitudinal design to demonstrate trends of sea urchin migration, overgrazing, and degradation of seabed along the Kenyan coastline.


Aboud, S. A., & Kannah, J. F. (2017). Abundance, Distribution and Diversity of Seagrass Species in Lagoonal Reefs on the Kenyan Coast. American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 37(1), 52-67.

Alcoverro, T., & Mariani, S. (2002). Effects of sea urchin grazing on seagrass (Thalassodendron ciliatum) beds of a Kenyan lagoon. Marine Ecology Progress Series, 226, 255-263.

Bastos, R. F., Lippi, D. L., Gaspar, A. L. B., Yogui, G. T., Frédou, T., Garcia, A. M., & Ferreira, B. P. (2022). Ontogeny drives allochthonous trophic support of snappers: Seascape connectivity along the mangrove-seagrass-coral reef continuum of a tropical marine protected area. Estuarine, Coastal and Shelf Science, 264(1), 1-14.

Bularz, B., Fernández, M., Subida, M. D., Wieters, E. A., & Pérez‐Matus, A. (2022). Effects of harvesting on subtidal kelp forests (Lessonia trabeculata) in central Chile. Ecosphere, 13(3), 1-13.

Camps-Castella, J., Romero, J., & Prado, P. (2020). Trophic plasticity in the sea urchin Paracentrotus lividus, as a function of resource availability and habitat features. Marine Ecology Progress Series, 637(1), 71-85.

Crump, B. C., Wojahn, J. M., Tomas, F., & Mueller, R. S. (2018). Metatranscriptomics and amplicon sequencing reveal mutualisms in seagrass microbiomes. Frontiers in microbiology, 9(388), 1-11.

Dahl, M., Ismail, R., Braun, S., Masqué, P., Lavery, P. S., Gullström, M., & Björk, M. (2022). Impacts of land-use change and urban development on carbon sequestration in tropical seagrass meadow sediments. Marine Environmental Research, 176, 105608.

Dennis-Cornelius, L. N., Williams, M. B., Dawson, J. A., Powell, M. L., & Watts, S. A. (2022). Effect of diet and body size on fecal pellet morphology in the sea urchin Lytechinus variegatus. Journal of Shellfish Research, 41(1), 135-144.

Ditzel, P., König, S., Musembi, P., & Peters, M. K. (2022). Correlation between coral reef condition and the diversity and abundance of fishes and sea urchins on an East African coral reef. Oceans, 3(1), 1-14.

Dzeha, T., Hall, M. J., & Burgess, J. G. (2022). Micrococcin P1 and P2 from epibiotic bacteria associated with isolates of Moorea producers from Kenya. Marine drugs, 20(2), 128-136.

Eklof, J. S., De la Torre-Castro, M., Gullström, M., Uku, J., Muthiga, N., Lyimo, T., & Bandeira, S. O. (2008). Sea urchin overgrazing of seagrasses: A review of current knowledge on causes, consequences, and management. Estuarine, Coastal and Shelf Science, 79(4), 569–580.

Githaiga, M. N., Frouws, A. M., Kairo, J. G., & Huxham, M. (2019). Seagrass removal leads to rapid changes in fauna and loss of carbon. Frontiers in Ecology and Evolution, 7(62), 1-16.

Govindasamy, C., Arulpriya, M., Anantharaj, K., Ruban, P., & Srinivasan, R. (2013). Seasonal variations in seagrass biomass and productivity in Palk Bay, Bay of Bengal, India.
International Journal of Biodiversity and Conservation, 5(7), 408-417.

Hamad, I. Y., Staehr, P. A. U., Rasmussen, M. B., & Sheikh, M. (2022). Drone-based characterization of seagrass habitats in the tropical waters of Zanzibar. Remote Sensing, 14(3), 680-688.

Harianto, J., Aldridge, J., Torres Gabarda, S. A., Grainger, R. J., & Byrne, M. (2021). Impacts of acclimation in warm-low pH conditions on the physiology of the sea urchin Heliocidaris erythrogramma and carryover effects for juvenile offspring. Frontiers in Marine Science, 7(2), 1-16.

Harris, L. B. (2020). Maritime cultural encounters and consumerism of turtles and manatees: An environmental history of the Caribbean. International Journal of Maritime History, 32(4), 789-807.

Iacarella, J. C., Adamczyk, E., Bowen, D., Chalifour, L., Eger, A., Heath, W., & Baum, J. K. (2018). Anthropogenic disturbance homogenizes seagrass fish communities. Global change biology, 24(5), 1904-1918.

Jacobs, Z. L., Yool, A., Jebri, F., Srokosz, M., van Gennip, S., Kelly, S. J., & Popova, E. (2021). Key climate change stressors of marine ecosystems along the path of the East African coastal current. Ocean & Coastal Management, 208(2), 1-16.

James, R. K., Silva, R., Van Tussenbroek, B. I., Escudero-Castillo, M., Mariño-Tapia, I., Dijkstra, H. A., & Bouma, T. J. (2019). Maintaining tropical beaches with seagrass and algae: a promising alternative to engineering solutions. BioScience, 69(2), 136-142.

Jeyabaskaran, R., Jayasankar, J., Ambrose, T. V., Vineetha Valsalan, K. C., Divya, N. D., Raji, N., & Kripa, V. (2018). Conservation of seagrass beds with special reference to associated species and fishery resources. Journal of the Marine Biological Association of India, 60(1), 62-70.

Jinks, K. I., Brown, C. J., Rasheed, M. A., Scott, A. L., Sheaves, M., York, P. H., & Connolly, R. M. (2019). Habitat complexity influences the structure of food webs in Great Barrier Reef seagrass meadows. Ecosphere, 10(11), 1-16.

Kebacho, L. L. (2022). The role of tropical cyclones Idai and Kenneth in modulating rainfall performance of 2019 long rains over East Africa. Pure and Applied Geophysics, 2(1), 1-15.

Koch, M. S., Johnson, C. R., Madden, C. J., & Pedersen, O. (2022). Irradiance, Water Column O2, and Tide Drive Internal O2 Dynamics and Meristem H2S Detection in the Dominant Caribbean-Tropical Atlantic Seagrass, Thalassia testudinum. Estuaries and Coasts, 1-17.

Kothari, C. R., & Garg, G. (2019). Research methodology: Methods and techniques. New Delhi, India: New Age International.

Lee, K. M., Ballard, M. S., Venegas, G. R., McNeese, A. R., Zeh, M. C., Wilson, P. S., & Rahman, A. F. (2020). Acoustic propagation in a seagrass meadow over diurnal and seasonal time scales. The Journal of the Acoustical Society of America, 148(4), 2482-2482.

Mamboya, F., Lugomela, C., Mvungi, E., Hamisi, M., Kamukuru, A. T., & Lyimo, T. J. (2009). Seagrass-sea urchin interaction in shallow littoral zones of Dar es Salaam, Tanzania. Aquatic Conservation: Marine and Freshwater Ecosystems, 19(1), 19-26.

Miller, P. M., Lamy, T., Page, H. M., & Miller, R. J. (2021). Sea urchin microbiomes vary with habitat and resource availability. Limnology and Oceanography Letters, 6(3), 119-126.

Msuya, F. E., Bolton, J., Pascal, F., Narrain, K., Nyonje, B., & Cottier-Cook, E. J. (2022). Seaweed farming in Africa: current status and future potential. Journal of Applied Phycology, 34(2), 985-1005.

Muthiga, N. A., & McClanahan, T. R. (2007). Ecology of Diadema. Developments in aquaculture and fisheries science, 37(1), 205-225.

Nadiarti, N., La Nafie, Y. A., Priosambodo, D., Umar, M. T., Rahim, S. W., Inaku, D. F., & Moore, A. M. (2021). Restored seagrass beds support macroalgae and sea urchin communities. Earth and Environmental Science, 860(1), 1-12.

Narvaez, C. (2018). Green urchin demography in a subartic ecosystem: patterns and processes. [Doctoral thesis, Laval University].

Okuku, E. O., Owato, G., Kiteresi, L. I., Otieno, K., Kombo, M., Wanjeri, V., & Mwalugha, C. (2022). Are tropical estuaries a source of or a sink for marine litter? Evidence from Sabaki Estuary, Kenya. Marine Pollution Bulletin, 176(2), 1-122.

Rahman, M. S., Tsuchiya, M., & Uehara, T. (2009). Effects of Temperature on Gamete Longevity and Fertilization Success in Two Sea Urchin Species, Echinometra mathaei and Tripneustes gratilla. Zoological Science, 26(1), 1-8.

Richmond, M. (2011). A field guide to the seashores of Eastern Africa and the Western Indian Ocean Islands. Stockholm, Sweden: SIDA.

Roff, J. (2013). Marine conservation ecology. New York, NY: Cengage Learning.

Short, F., Carruthers, T., Dennison, W., & Waycott, M. (2007). Global seagrass distribution and diversity: A bioregional model. Journal of Experimental Marine Biology and Ecology, 350(1),

Scott, A. L., York, P. H., Duncan, C., Macreadie, P. I., Connolly, R. M., Ellis, M. T., & Rasheed, M. A. (2018). The Role of herbivory in structuring tropical seagrass ecosystem service delivery. Frontiers in Plant Science, 9(127), 1-15

Tarimo, B., Winder, M., Mtolera, M. S., Muhando, C. A., & Gullström, M. (2022). Seasonal distribution of fish larvae in mangrove-seagrass seascapes of Zanzibar (Tanzania). Scientific reports, 12(1), 1-13.

Uku, J., Daudi, L., Alati, V., Nzioka, A., & Muthama, C. (2021). The status of seagrass beds in the coastal county of Lamu, Kenya. Aquatic Ecosystem Health & Management, 24(1), 35-42.

Yahya, B. M., Yahya, S. A., Mmochi, A. J., & Jiddawi, N. S. (2020). The trophic structure of fish in seaweed farms, and adjacent seagrass and coral habitats in Zanzibar, Tanzania. Western Indian Ocean Journal of Marine Science, 19(2), 17-27.

Ziegler, A., Faber, C., Mueller, S., & Bartolomaeus, T. (2008). Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging. BMC Biology, 6(1), 1-15.
How to Cite
Sergon, N., Chemoiwa, E., & Mulei, J. (2022, November 12). Spatial-Temporal Occurrence of Sea Urchins and their Grazing along Diani-Chale Lagoonal Reefs, Mombasa. African Journal of Education,Science and Technology, 7(2), Pg 32-44.